这些工业机器人能够承受高水平的灰尘、颗粒和碎片而不会失效。人类工人在完成打磨工作时冒着安全风险,因为吸入有毒化学物质或接触其他碎片会导致短期和长期的健康影响。工人受伤会导致生产延迟,从而增加成本和时间。与工人不同,机器人可以昼夜不停地工作,不需要休息,也没有受伤的风险。打磨机器人进一步减少周期时间每分钟能够移除几立方毫米的材料,这一速度比人类工人快得多。
打磨机器人为制造商的生产线提供了更大的灵活性。这些机器人不仅能够完成打磨应用,还能够完成其他应用,如材料搬运。事实上,随着刀具更换器像机器人一样的机器人安川MH-50可以表演物料输送和抛光应用,例如打磨,都在同一个工作单元内进行。这为公司节省了劳动力成本,因为同一个机器人可以执行与多个应用程序相关的工作。
用现代设备改造传统的粉磨工业是实现低成本的动力之源和必要手段。这对推动打磨技术进步、提高劳动者素质、提高铸造企业效益、优化产业结构调整、促进制造业发展具有重要意义。同时,市场对具有快速响应、高精度和薄脆性的工艺也有很大的期望。
复杂工件打磨的技术挑战:快速响应、薄脆性和高精度
快速响应、高精度、薄脆性是市场在高体积、低成本基础上的进一步需求,也是目前实验室研究人员正在攻关的方面。
为了进一步提高陶瓷型芯自动激光去毛刺的精度,黄等人提出了一种结合全局和局部特征信息的点云配准方法,终总误差小于35 m。
由于铸件变形不均匀,优加工路线未知。因此,可以以理想的打磨加工路线为基准,定量衡量不同打磨路径的精度,从而确定哪种配准方法可以高精度地打磨路径。打磨路径生成的关键步骤。
基于设计模型和三维点云数据比较的方法已经成为许多数字设计过程的有效检测方法。点云匹配分为粗匹配和精匹配两个阶段。粗匹配算法包括主成分分析、四点同余、三维正态分布变换,以及局部特征描述,如快速点特征直方图特征。